
FLUTTER DEVELOPER

Building Mobile
Banking Apps

with Flutter
Lessons Learned From Delivering

the Credit Agricole Project

Copyright © 2022 by LeanCode

All rights reserved. The text of this ebook may not be distributed or posted
online without the prior written permission of LeanCode.

For permission requests, please send an email to marketing@leancode.pl  
with the subject “Ebook Permission Request.”

mailto:marketing@leancode.pl

Table of Contents

3

4

5

6

7-9

10-12

13-14

15

16-17

18

19-20

21

22-23

24

25

26

27

28-29

30

31

32

33

34

35

36

37

38-39

40

41

Editorial note
 Involving around 30 Flutter Developers
and 250 people of any role makes it
probably one of the biggest Flutter
applications in the world developed by
LeanCode and other partners - with
almost 6,000 Merge Requests  
(yes, we use GitLab), yielding over
16,000 commits.

“CA24 Mobile” is the native mobile banking
application built with Flutter framework for retail
clients of Credit Agricole Bank Polska, Polish branch
of the globally known French international Banking
Group Crédit Agricole.

MVP of the project took 12 months to accomplish
with around 30 Flutter Developers and it was
definitely meeting the definition of the large-scale
project.

The project was divided into 12 business squads
and 4 technical squads. Each developer was
assigned to a squad, sometimes more than one.

Some of the most noteworthy ones are:�

� The Overall Design squad – responsible for
maintaining UI components for the whole application,
global appearance-related things (like themes or
accessibility stuff), and also UX research and the core
of cooperation designer-developer.�

� The STP squad – responsible for all authentication  
and security-related things in the app. It is them who
integrated Runtime Application Self-Protection  
and authorized API requests.�

� The Framework squad – responsible for our core
framework consisting of stuff such as the application’s
navigator, project’s architecture, its infrastructure  
with all CI/CD, and other meta stuff.

The rest of the squads mainly focused on a specific
business domain, like money lending, checking bank
accounts, onboarding, and so on.

This ebook serves the purpose of sharing some of the
learnings and pain points behind developing and
maintaining such a large-scale banking app project,  
as well as proving that Flutter is an enterprise-ready
technology.

This ebook was created based on the experience
gathered while building banking application for
Credit Agricole Bank Polska and other financial
institutions.

Business perspective
on Flutter

The mobile banking app is called “CA24 Mobile –
app full of benefits”. That’s how it was
communicated to the market and the customers.
We want to show you what exactly does  
full of benefits mean.

In the ever-changing world of technology and mobile
devices, we needed a new mobile application,  
the best one available on the market. We knew
about the changing customer behavior. We knew
customers visit local bank branches less and less
often and that we had to integrate our channels to
meet customers’ expectations. Our goal is to be  
in the narrow range of choice, so customers  
want to choose our offer.

Therefore we decided to create an entirely new
application, starting from a blank page. The new mobile
app would meet our business needs, realize the bank’s
strategy, allow flexible growth, integrate with other
components, and lead us to the top of the market.

We created a product, a mobile banking application,  
and introduced it in our MVP1, expecting it’ll achieve 6th
place. Our final goal is to develop our CA24 app further,
so the MVP2 we plan to release by the end of this year
will reach the top 3. Then we’ll start a significant
acquisition of new customers.

We decided first to achieve that fantastic, seamless
customer experience, make the customer marvel  
at the app, and offer those benefits. We achieved these
first two goals in MVP1. We still need to deliver new
processes in the new application, but it’s something  
that requires constant development and will be included  
in the following MVPs.

From the project organization perspective, we first
worked on a design of the application and the agency
that would meet the challenge of designing something
very modern. Then we searched for the technology that
would allow us to deliver such an outstanding design  
and necessary functionalities.

We focus on the strategy of being “100%
digital and 100% human” for our customers
all the time. We keep that in mind while
delivering our projects, products, and
service solutions. Hence the connection
between the customer and the adviser,
with technology in the background.

Some of the stated goals:�
� top 3 among mobile banking applications in

Poland;�
� + 100K increase in accounts per year�
� process automation with the use of bots up to 45%

by the end of 2023; �
� shortening the time-to-market, resulting from our

idea of conducting both our projects, Seamless
and Omnichannel, in the Agile model;�

� top 1 in CRI (Cash Return on Investment);�
� -4 percentage point of churn indicator;�
� +5 percentage point of account activation ratio.

Key areas: Opening an Account, Security, Product
Services, Full Range of Payments and Transfers, Buy
By Click, Benefit Club, Marketing Preferences.

To choose our design priorities, we asked
ourselves: “Which areas should we start
with?” This type of product, the best product  
in the world, as experts would always like to
offer to the customer, can’t be made all at
once.

By Katarzyna Tomczyk-Czykier, Tribe Owner
in the "CA24 Mobile" project and Managing
Director in Channel Excellence and
Omnichannel Orchestration.

We were looking for a technology to support us  
in the business context. We wanted to know if using
a native solution and developing it for every platform
was better. Or was a cross-platform solution a more
suitable choice for our case?

We had some negative experiences with building  
an application in native mode. Our maintenance
costs started to increase. Apps started diverging
because of the different platforms. It was also
challenging to manage an appropriate time-to-
market. The application was basically “dead”  
in terms of development and improvements.  
We knew our application required building
something from the ground up.

We decided to do a PoC (Proof of Concept). We did
three PoCs with three different companies, including
LeanCode. The PoCs showed us it was both  
an efficient and effective solution and that the
development was fast – the 120 FPS was available
to us. An operational demo version of the app
answered all of our requests and needs.

IT perspective

on Flutter

We also think that another factor of our success was  
that it was an innovative project, considering Flutter  
at scale and that we decided to deliver a mobile banking
app in such a short time with such an investment.  
The Agile approach was something new for us.  
On such a scale, it would be new for many organizations.

We would say what we needed on Friday, and  
on Monday, we’d have a demo version. That  
showed what we meant – the effectiveness  
and high performance on the two platforms  
(iOS and Android).

Back then, React Native was considered  
a more mature and popular solution when
we made the decision. However, we
wanted to bet on something more
innovative. More modern. Something that
would accelerate our product and strategy
development and offer a shorter way,  
so we started considering cross-platform
solutions.

Finally, despite various recommendations not
necessarily supporting our choice of Flutter,
we chose the best technology for our case.  
It’s Flutter, obviously, and we’re happy about
this decision. It was a hard one involving
various risks, but we decided to risk it,
considering the good risk analysis.

Start of our decision path – Validation criteria:�
� Product maturity�
� Future vision�
� UX/UI opportunities�
� Development and maintenance costs�
� Resource availability and potential�
� Security

This project was organized in the Agile model of work.
There were over 200 people involved. We’re talking
about a tribe, a concept made by Spotify. In our case,  
it was a “village” of more than 200 people. About  
100 of them were in IT. The Flutter team had more than  
20 people, sometimes even around 30. We also had
20+ backend developers.

By Tomasz Czerwiński, Strategy and
Architecture Department Director and
Technical Tribe Owner  
in the "CA24 Mobile" project.

Introduction  
to the project

When we talk about scale, we have to
define what it really means in the
context of a mobile application. There
are projects at LeanCode that we call
either “small” or “large”. It happens that
we take a completely different
approach when it comes to those.

When it comes to small projects, it’s easier to keep
the entire process of their development under
control. We can assume that we are aware of pretty
much everything project-related, and all
development practices are dictated by the greater
good of the client and care for the budget. These
projects tend to hold tight even if we don’t keep to
the strict rules of project management.

We can see our development sins, but we’re
confident that if there’s the right time, it’ll be fairly
easy to refactor them. Of course, we always want to
keep our code simple, clean, and easy to change.
We would like it to be loosely coupled and well
structured, so we do constant refactoring and
always keep it top-notch.

We often know every developer working with us on
small projects. There’s even a huge possibility that 
 a backend dev that serves us some API sits next to us  
the whole time.
 

It’s much easier to ignore organizational issues if you
don’t see them because the team sits in a single room.
We don’t benefit so much from building powerful
abstractions when we can go get some coffee with 
the team and discuss everything ad-hoc.

So, in large projects, we just want to help ourselves –  
to deal with multiple obstacles that we cannot directly
resolve - obstacles that are not only related to code.
Let’s see how we can wrap our heads around this level
of complexity not only in terms of code but, most of all –
in terms of communication.

However, we all know that it’s a pursuit of perfection
that can become pretty frustrating if we don’t take any
measures to build some safety net around it.

In this study, we would like to share our thoughts and
experiences from our almost-a-year-long journey of
developing a large banking mobile application with
Flutter.

By developers working in the 13 Framework
squad at the "CA24 Mobile" project:

When we’re talking about large projects,
we mean a project spread across different
teams, companies, and professions
because development is only a small  
part of the whole.

Mateusz Wojtczak,

Senior Flutter Developer &
Head of Mobile at LeanCode

Jakub Fijałkowski,

Senior Backend Developer &
Head of Backend at LeanCode

Robert Odrowąż-Sypniewski,

Flutter Developer at LeanCode.

FLUTTER AT SCALE

Let's talk about code ownership.  
In a small project by a single team,
there isn't too much to speak of  
(or is there?). The team wrote it; the
team owns it and is responsible for it.
However, what if we are talking  
about large project?

Perception of code
ownership in large projects

In a small project, a team may split the responsibility
for the code further internally, but it doesn't change
the external perception – the team owns the code.
The reality might be slightly different, but it will boil
down to this variation. If the team doesn't own the
code, it will deteriorate quickly.

In the case of the CA24 Mobile app, at the highest
point, 30 mobile devs were working on the project
split into 12 business teams (also known as squads).
We might say that this is just a simple extrapolation –
each team owns the code they create. That would
be true. Mostly.

The problem arises when we realize
that the teams work on a single app and
single codebase. A. Single. Codebase.
So, by another extension, if every team
creates the code in the same codebase,
then is every team responsible for
everything? If that’s the case, then  
no one will be responsible for anything.

There might be places where some people will feel
responsible for their piece, but that will be an
exception. If you find a bug, nobody will be willing to
fix it because that will always be someone else's
problem. If you need another feature, you will need
to write it yourself because no one cares.

We need to follow the limit and set boundaries exactly
where they should be. In a project of this size, these will
not come out naturally. We need to put them down and
abide by the rules explicitly. If we do this right from the
beginning, it will not feel artificial and won't be
questioned.

After all, the rule is natural. Everyone feels responsible
for their work, but we cannot allow a situation where too
many people claim ownership of the same piece. That is
the problem, and we need to overcome it by introducing
explicit code ownership.

Let's put some ground rules on how we define code
ownership at LeanCode in a Flutter project of this size.

First and foremost, every line of code is owned by  
a team, not by a single person. Even if the team consists
of a single developer, it is still the whole team's
responsibility to maintain the code. Developers are rarely
working autonomously, and someone else  
(usually "business people") always prioritizes the work.

That's why a single person should never be
responsible for a piece of code. If that happens,
introducing any code changes will require getting
approvals from the developer’s supervisors that have
much different priorities than we have. Teams are part
of a structure at a level that gives them enough power
to correctly prioritize the work around the code and pay
for it by investing hours. A single person cannot do that.

FLUTTER AT SCALE

Then some bugs will emerge, or there will appear  
a need to do a technical change (there probably
won't be a need for business change as no one
owns the code; hence no one cares about its
business value), and there will be no one willing to
take care of it. Effectively the code will be
abandoned (or one of the teams will be forced  
to own it).

We know we need to preserve ownership, but  
how should we define who owns which part of  
the code?

When a whole application is developed by a single
team (be it a small mobile app or a microservice on
the backend), the rule is simple: they own everything
they create. There will be some shared code in
internal libraries, but these will be created and
maintained by a different team, and we probably
won't see the code at all – we will consume it.

An extensive Flutter application that is developed  
at a rapid pace is not that simple. Effectively everyone
works on a single codebase, sometimes with not-so-
clean business responsibilities.

Of course, we could introduce very clean boundaries
and physically separate the teams, but that would
introduce so much friction and tedious work for the
person responsible for putting it all together that the
development would grind to a halt. We need to find  
a different way.

Even if a team has a single dev and they switch
teams (or leave), the responsibility for the code stays
within the said team. A situation where a team gets
dismissed or the whole staff of a team leaves
happens extremely rarely. There will always remain
a person inside a team who owns a piece of code
(even from a business perspective).

And by the responsibility of the code, we mean that
the team maintains the code. If a bug is found in  
a piece of code owned by the team, their obligation
is to reserve time for a fix and do it. They also must
ensure that the code adheres to the always -
changing coding standards. It doesn't necessarily
mean that only they are allowed to add new code
lines there. If there is a need, someone else outside
the team can edit the code – but that does not
change the one responsible; it's still the team.

And although we are rather pragmatic when it
comes to all the rules, meaning that we follow the
"there can always be exceptions" motto, this is the
one that we believe should be followed with  
religious devotion. Otherwise, problems arise.

The "no exceptions" rule is critical here.
If we don’t abide, no matter if we allow
some piece of code to be owned by
anyone or just a couple of different
teams, the ownership will get blurred
and lost. The quality of the code will
deteriorate.

And, to be honest, the answer is not that  
far away – let's split the project into
packages, the same way we would do
when separating physically, but keep
everything in the same repository and
reference (& compose) using just regular
path references.

This will make the boundaries clean, but the walls won't
be so high – you can always look into other teams' code
without any fuss because it's right there, just a click
away. You also compile everything at once, so provided
that you enforce that on CI (and you should!), everything
will work more or less at all times. You will also, just by
random chance, test other people's code.

Nevertheless, code ownership is not a silver bullet.  
This approach has problems that need to be overcome.
For once, because the walls are not that high, there is
the possibility that someone will modify the code
behind the owners' back. This might be a problem
when your team does not want to adhere to set rules,
but it is primarily an organizational issue – and I would
say that if that happens, it means that you have other,
more critical problems.

FLUTTER AT SCALE

We also need an "app" package that brings
everything together. This one is even more
important than the first one - we can't replicate it.
We are required to have a single entry point to the
app. And everyone needs to contribute to the app.

We cannot make an exception from our main rule for
these two cases. Not abiding will be far more
disastrous than sticking to our guns. It means that
we need to find a way for us to make it work.

In every project, there always is a shared folder for
files that are used across the teams. A place where
the local packages are bootstrapped and
combined to create the final application binary.  
We don't want these kinds of packages because
they don't have clear ownership.

Everyone writes code there (directly or indirectly),
but no one feels responsible for it. We also can't
ditch these completely because we need to have
some shared ground. Otherwise, we would  
re-implement the same thing repeatedly (which will
happen, but with the common folder – at a much
smaller scale).

Keeping up with every developer's needs can be
exhausting. And that is not the only responsibility of the
technical team. As said before, they are responsible for
the overall architecture and keeping everything  
in proper order.

Although it might not seem as much, that is a lot of work.
Every minor technical bug, every small optimization,  
and every feature required to make the app work and be
maintainable will ultimately be their responsibility.
Although not at all times, the technical team will have
plenty of work.

Because at the end of the day, someone has to be
responsible. And if no one wants to be responsible, the
technical team will be.

However, their work is vital. You can't possibly allow  
30+ people to work on a single codebase and expect  
that they will come up with a coherent, maintainable
architecture. That people will never stomp on each
other's toes. They will spontaneously combine
everything into a single application.

That won't happen just like that. Natural-born leaders
might be willing to do this work because they are best
suited for it, but leaving that to chance will make the
process longer and more painful.

Don't mistake it for a team of exiles, a team where
you end up doing only the work that no one else
wants to do. They have a much more important role.

At first, it might seem like a bad idea. This "artificial"
technical team doesn't bring any clear business
value. It looks like a team that no one needs – no
business Product Owner, and they don't create any
end-user features. You can't easily plan their work  
in sprints.

We found out that finding some team
that naturally fits to be the owner of this
kind of code is not the best idea.  
What worked for us was to create  
an "artificial" technical team.  
This team was responsible for every  
left-out piece of code.

Every project of this size requires a team of
"architects" that overlooks the development, puts  
the basics in place, and sets the ground rules for
development. This team is responsible for the code
that no one needs, and they are responsible for
making sure that everything works together.

They put in the ground rules and ensure they are
followed. They design how to (technically)
communicate and try to satisfy every developer's
need that is not directly related to the business.

FLUTTER AT SCALE

Starting the project often begins with us
thinking about how to structure this one
better than the previous one. There are
multiple recommendations for
structuring code. We have a lot of
architectural patterns that enforce or
promote some, but these can be
summed up into two main approaches –
horizontal and vertical structures.

Feature-based project
structure

You may have heard about layering your code.  
It’s a common thing that people propose to divide
code into layers that handle different abstractions.  
The layers often go from the end-user (UI layer)
through some view & application logic until they
reach pure data – meaning some domain logic or
data contracts. That’s what we call a horizontal
approach.

Repositories package

AccountsRepository LoansRepository BenefitsRepository

Blocs package

AccountsCubit LoansCubit BenefitsCubit

UI package

AccountsDetailsPage LoansPage BenefitsPage

As we can see in the diagram, in this example, we have  
a UI layer with some Flutter widgets, an application logic
layer with some Blocs/Cubits, and a data layer with
repositories representing our data sources. While the
horizontal approach may not seem so bad, it can corrupt
our project in the long run. Let's see what that
architecture means.

Why do we structure the code? To organize it in a better
way. Why do we organize? To communicate better.
That's something that we can build our code structure
on. As said in previous chapters, we need code
ownership. So, let's try to answer this question:  
Who owns the repository package? Who owns  
the widgets package?

FLUTTER AT SCALE

What does it mean for us? It means that no matter
how we structure the code, it would still be shaped
similarly to the organization. That means we would
like to project our organization's communication
structure onto our code so that we don't have to
artificially divide our code and do it as we do with  
the rest of our work.

In that case, let's ask ourselves: how do we
communicate? Well, is there a "Repository Daily
Meeting"? Is there a "Widgets Daily Meeting"?  
Not at all.

The team is most likely divided into business squads
with responsibilities according to some business
domains. In that way, there are people in squads that
are crucial to progress but have nothing to do with
software development.

Ok, so we have our "Loans Squad Daily Meeting."  
We can talk about business requirements, and as
developers, we can extract the business knowledge
from other people and process it so that we know how
to build the software around that.

In this domain-driven workflow, let's come back to
code structure. Let's try to project our
communication model onto that:

Repositories package

AccountsRepository

AccountsCubit

AccountsDetailsPage

Loans package

LoansRepository

LoansCubit

LoansPage

Benefits package

BenefitsRepository

BenefitsCubit

BenefitsPage

Now we can see that if the same developers work
on anything related to loans, they don’t have to work
outside their packages. This way, we also minimize
code conflicts between squads.

Our daily work is going to be revolving around those
packages that are directly owned by our squad.
That’s what we call a vertical approach, and  
it allowed us to maintain a large project code
structure.

Any organization that designs a system
(defined broadly) will produce a design
whose structure is a copy of the
organization's communication structure. 
 — Melvin E. Conway

Well, everyone and no one, of course. We could bring  
an iconic software aphorism in here - Conway's Law.  
It states that:

FLUTTER AT SCALE

Also, this example shows a 1:1 relation between
squads and packages. It’s a bit of a different rule.  
As with previous code ownership assumptions,  
we allow multiple packages per squad. Usually,
some larger business domains are still strictly
related to the squad, but devs need another
package for that.

However, this doesn’t exhaust the subject of code
structure.

What about the actual code inside the package?

It’s also essential to have some guidelines here.
That’s because you want your code structure to be
predictable. When one developer swaps squads
with another, you don’t want them to spend weeks
studying the code before anything happens.

How can we organize it inside the package?

Let’s use the same assumptions as with package
layering. Let’s try to make a vertical approach inside
packages. To do that, we need to define the core unit
of our work: in our example, it’s a feature.

For example, the “Onboarding Squad” can have
their onboarding customer journey and a KYC
(Know Your Customer) module that is a separate
thing. It can be organized in a different package.  
The important thing is to remember that one squad
can own many packages, but every package  
should have only one owner.

In agile development, a developer works on
a user story enabling users to do something
related to the business. If we want to let
users see their loan agreement documents,
we have to do everything from UI to data
sources because otherwise, the feature
doesn’t make sense.

So, we can define our features inside a package, and
inside every feature, we can split our work into blocs,
widgets, pages, data classes, etc. What happens inside
a feature directory stays there. For other devs, it’s a black
box as long as they don’t need to go in there.

FLUTTER AT SCALE

A developer would wish to have a simple way of
fulfilling their daily tasks, running tests just in their
packages, running formatting.

We need a task runner like "Make" or "*insert your
favorite language*ake" to run all these things in  
a multi-package environment. It would be
convenient if we had a task runner that is
somehow aware of Dart/Flutter packages and is
adjusted to the ecosystem we work in.

Fortunately, we found out that there already are
tools for that purpose. One that we have selected is
Melos. It's officially described as "A tool for
managing Dart projects with multiple packages".
That's pretty much what we need.

The next crucial thing in large projects is
simplicity and consistency in daily work.
What we mean by that is that we don't want
to have trouble restoring dependencies in
our package.

Running tasks in

monorepo

Melos provides a couple of scripts itself, such as:�

� Automatic versioning & changelog generation�
� Automated publishing of packages to pub.dev.�
� Local package linking and installation.�
� Executing simultaneous commands across

packages.�
� Listing of local packages & their dependencies.

FLUTTER AT SCALE

It helps maintain many popular packages like
FlutterFire (Firebase libraries for Flutter), Flame
(game engine), or Flutter Community Plus plugins.
However, the most important thing is that you can run
any shell script in each package directory and filter
what packages it should consider.

It’s helpful because you can define such
scripts and filters once, write some simple
docs (although the melos.yaml file is already
pretty convenient to read), and help new
developers on your team be quickly
onboarded in the environment. A task runner
also simplifies building a CI/CD pipeline
because some tasks are already defined
there.

Last but not least, you can use concurrency for your
scripts. But beware of that because your Flutter scripts
may fail if they are run in parallel. In some cases, there
will be locks, so even if you start it concurrently, the
subsequent tasks still have to wait before the other ends.

Also, Melos’s command output can end up messy when
many packages are being considered since it doesn’t
maintain the order – simply speaking, the output is
mangled from all the executions.

Still, it’s a great tool, and you probably should use it,
especially when working on large Flutter projects.

 A typical Melos default file structure looks
something like this:

my-melos-repo/

 melos.yaml

 packages/

 package-1/

 pubspec.yaml

 package-2/

 pubspec.yaml

The location of your packages can be configured via
the melos.yaml configuration file if the default is
unsuitable.

FLUTTER AT SCALE

Getting started with
Melos

By Majid Hajian, Head of DevRel at
Invertase and a Google Developer expert,
an award-winning book author, Flutter,
PWA, perf enthusiast, and a passionate
software developer with years of
developing and architecting complex  
web and mobile applications.

This enables a new mechanism for linking local
packages, which integrates better with other
tooling (e.g. dart tool, flutter tool, IDE plugins)  
than the mechanism currently being used  
by default.

Please read the documentation  
for usePubspecOverrides before enabling  
this feature.

Melos requires a few one-off steps to be completed
before you can start using it. Melos can be installed
as a global package via pub.dev:


```dart pub global activate melos```





To set up your project to use Melos, create a 
melos.yaml file in the root of the project. Within the 
melos.yaml file, add name and packages fields:





name: my_project


Packages:


  - packages/**





The packages list should contain paths to the 
individual packages within your project.  
Each path can be defined using the glob pattern 
expansion format. 


Once installed & setup, Melos needs to be 
bootstrapped. Bootstrapping has 2 primary roles:�

�� Installing all package dependencies (internally 
using pub get).�

�� Locally linking any packages together.

 

Once successfully bootstrapped, you can develop 
your packages side-by-side with changes to a single 
package immediately reflecting across other 
dependent packages.


Melos also provides other helpful features such as 
running scripts across all packages. 



For example, to run dart analyzer in each package, add 
a new script item in your melos.yaml:




```


name: my_project

packages:

 - packages/**

scripts:

 analyze:

 exec: dart analyze .


```


Then execute the command by running melos run 
analyze.


Consider setting usePubspecOverrides to true,  
if you are using Dart 2.17.0 or greater:





command:


  bootstrap:


    usePubspecOverrides: true




Cross-squad 
communication


The physical split into (local) packages does 
not solve all the problems. Unfortunately,  
it even amplifies other issues. Life is not simple; 
although you might have a “clean-cut” when  
it comes to team responsibilities, you must 
assume that there will be a point when  
a person might need someone else's help.


With twelve squads and a banking app, some 
features depend on data from other squads, and 
some invalidate data in others. You can’t possibly 
have an app that has 12 completely separate 
features. 



Take, for example, the accounts in a banking app –  
it is the most basic feature to see a list of accounts 
you own. Every feature depends on it this way  
or another. 





For example, when you see a transactions list  
(a basic feature for a bank app), you must see it  
in the context of an account overview. On the other 
hand, when a payment is made, it changes the 
account balance, which is yet another account 
property.





As you can see, there always will be dependencies 
between teams. What is worse, the dependencies 
will not be unidirectional. There might be cases 
where two teams need to cooperate with each other 
in both directions. 




An example: you need some data (must be 
synchronous), then you do something and expect 
someone else to update the data mentioned above 
(might be asynchronous).





But that is just one example and arguably simpler  
(to maintain, not to develop) because you can 
quickly invert the control by, e.g., using events, 
resulting in effectively unidirectional dependence. 



But there are cases where you need access in both 
directions. A squad worked on providing basic 
authorization functionality, which was later used by 
arguably every squad. 


On the other hand, when displaying some auth-related 
configurations, we needed the information from 
accounts. This couldn’t be made asynchronous – 
everything needs to be provided now. And we have  
a cyclic dependency that, although solvable without 
too much fuss, is another thing to maintain.




And because of the plethora of options, we need to put 
some constraints there so we can do everything easily. 
And to make it last.

We also put some more concrete constraints there. For 
example, the synchronous facade should expose the 
data as streams (backed by `BehaviorSubject`) so that 
integration and auto-update (after an event) are easily 
doable.


Our solution to that is quite simple. We divide the 
communication into two groups – when we need some 
data or we need to make an action “right now.”  
It covers, for example, the authorization mentioned 
above or getting the accounts list; and asynchronous, 
where we invert the dependency and expose that 
some action occurred as an event. The other squad 
can subscribe to it and react, updating their data.  
It covers updating the account (a reaction in the 
accounts team) to a new transaction (event raised by 
the payments squad).


FLUTTER AT SCALE



Because of that, the data should be automatically 
provided (when requested), and every failure 
should be automatically reattempted. The error 
should not, in most cases, be visible through  
a facade because you can’t react to it sensibly – 
and if you allow reacting to it, you can easily react 
too much. Multiple teams will be shown  
the same error message.




The other kind of interaction, where you don’t need 
data but need to do something, is even simpler - you 
expose a properly named & self-contained method 
that does what you need, the way you need.  
Making more rules here is unnecessary.


The other kind of facade, the asynchronous one,  
is mostly similar, except it does even less. If you do some 
sort of action, you expose an event that describes what 
occurred. For example, when the user makes a payment, 
you expose a data package that tells you the source and 
destination accounts, the title, and what amount  
it covers. Nothing more is revealed. 





You also don’t store the events – we’re not doing event 
sourcing or any persistent-event architecture.  
After all, every event we publish is meant to update some 
UI or trigger data reload. The heavy lifting is done  
on the backend.


FLUTTER AT SCALE



Navigation
 Another form of cross-squad 
communication is cross-squad 
navigation. In such a vast domain 
split between twelve different 
business squads, navigating through 
many pages in the applications will 
be prepared by another squad.


For example, from the page presenting details  
of a bank account that is owned by the accounts 
squad, there must be a way to seamlessly navigate 
to bank transfer which is owned by the payments 
squad. Such a navigation use-case needs to be 
addressed while adhering to the code ownership 
principles and code separation between multiple 
dart packages.


Separation from Flutter


Navigation is part of business logic; because of this,  
it should be available from the bloc/cubit business  
logic code. However, usually, we avoid introducing  
a dependency on flutter in business code. 





This constraint means we have to somehow trigger the 
navigation on the view side. It is usually achieved by 
creating some pseudo state or introducing an additional 
stream for navigation events.





In our solution, because the navigator state is 
independent of Flutter, we have no issue passing it  
to the business logic, and we can execute navigation 
right from the bloc/cubit.


To achieve those objectives, we implemented 
custom navigation based on the Flutter standard 
navigation with the following objectives�

� Separation of navigation targets from the page 
implementation�

� Allowing for passing the context data between 
pages�

� Separation of a navigator from Flutter



Separation from page 
implementation


To allow for navigation between different squads 
without exposing the specific page implementation 
between pages and squads, the page definition has 
been split between the globally visible target and 
package-private builder, which builds the page 
based on data from the target.




The targets are somewhat similar to intents known 
from the android development world. A target is  
a class representing a specific page in the app. 
 It can also contain additional context data that 
needs to be provided to build the page. 



For example, the target for the bank account details 
page will contain the bank account number of  
the account that is meant to be displayed.


The target is an identifier necessary to execute  
the navigation; it must be available to all squads who 
might need to navigate the page. Thus, the targets are 
defined in the central navigation package.


FLUTTER AT SCALE



Localization & 
Translation 
Management Systems


The next important thing when 
developing large Flutter applications 
is being available to people from 
different cultures, locales, and 
countries. Thus, we need a way to  
set up localization (often put as l10n). 

Localization "is the process of adapting  
a product's translation to a specific country  
or region." It's a part of a more extensive process 
called internationalization (or i14n). 

Hundreds or thousands of string values are used 
across the whole app, and they have to be 
translated according to the current user locale  
on their device or personal setting within the app.  
In our case, we needed over 5500 string values  
in two languages for the first release, but we also 
needed the possibility of adding more languages 
later at a low cost. 




That's why you need a localization solution.




Flutter already has a preferred solution for l10n. 
There are two main packages from the Flutter team: 
one called flutter_localizations (for l10n) and another 
called intl (for i14n). These two are connected and 
even work together to make your app available to 
everyone. The most popular approach is to use 
those packages along with .arb format files that 
contain "key-value" information about each 
localized string.


The problem is that information about what to localize 
and how to do it doesn't come from the development.  
In most cases, it's business knowledge that has been 
processed by many people in the organization: 
marketing people, product owners, translators, and 
others. Developers are only one small part of that. 





It gives us a reason to think that localization is no longer  
a development thing. It's a product thing. Thus, 
localization files stored in code repositories should not 
be a single source of truth. Referring back to the rule of 
code ownership, localization should also be owned 
following the same rule, and that ownership should be 
transferred to business people.





Fortunately, there already are tools meant for that 
purpose. They are called Translation Management 
Systems and typically are web apps optimized for 
localization workflows. 



In our project, we used Phrase as a TMS tool because  
it supports the .arb format and has many convenient 
features like comments, activity tracking, roles,  
and advanced translation workflows.


TMS tools can help you with things like:�

� Tracking the history of translation terms�
� Discuss localization through comments�
� Manage glossary of business domain-related 

terms that could be uncertain for translators�
� Tagging terms�
� Importing keys and values from l10n files�
� Exporting translations to l10n files�
� Versioning translations (like Git in the development 

world)


FLUTTER AT SCALE



Another important thing is to remember that 
translation workflow behaves differently than the 
development process; therefore, we need to have 
other relevant tools. 



We have business people who make initial 
localization terms in a large project. Then it goes to 
translators (probably more than one) that also send 
some translations to native speakers to consult  
and confirm. After that, localizations can be 
accepted by translators or changed again. 




That means we need a way to verify some already 
translated terms. It’s hard to visualize this process, 
so let’s take a look at the Phrase workflow 
diagram:


As we can see, localization has a specifically 
designed workflow. TMS tools are crucial to have  
in your project (even if it's not large) because using 
them is simple, and many l10n-specific things are 
being taken care of for us.





Last but not least, check the trial version of your TMS 
tool first. It's crucial because many TMS tools have 
different features and handle some specific file 
formats in different ways. Especially with Flutter .arb 
files that are not so popular in the l10n world, you'd 
better be sure that the tool you will pay for is 
compatible with your development.


FLUTTER AT SCALE



Automatic UI tests
 I think we all can agree that UI tests are 
great. They can simplify testing 
tremendously and lessen the number of 
regressions. They could give you feedback 
if you broke something right away. They 
might be hard to maintain, and you probably 
need a dedicated team just for writing  
UI tests, but they're still worth it.


There is one problem, though – they're painful to 
work within the Flutter app. You have all the building 
blocks, Flutter Driver to test Flutter parts, and you 
can use Appium for the native parts, which is 
cumbersome. It gets even worse if you have two 
separate teams: one writing the app, the other 
writing the tests.




As some of you probably know, to find a Flutter 
element in the app, you either have to find it by 
traversing the widget tree, which is rather 
complicated and error-prone, or look for it using  
an attribute. The one used the most is the `key` 
attribute – you basically provide an id that both 
teams know. 




The only problem is that someone has to add it, and 
it has to be the developer. And you can't add keys  
to every element because it will be no different from 
traversing the tree.





And since the team doing the tests is the one that 
requests keys (they only know what they need to 
find), they need to ask the dev team to do it politely. 
That might work if you have a single team 
developing the app and a single team developing  
the tests. 





If that's not the case: the testers' team must know 
who owns this particular element (which might not 
be so obvious from the outside) and direct  
the request to the owner. Otherwise, it will surely 
get lost. You have to have a definitive procedure for 
requesting keys.




Doing the procedure & pinpointing the owner takes 
time, although you can't start writing the tests 
without it. But the best person for the job will be 
someone from the inside - a dev. And dev time is 
precious.


And that makes a problem:�

� Automatic versioning & changelog generation�
� It takes developers' time,�
� Which, if not accounted for, might be considered 

"wasted",�
� So it is not in line with PO's goals,�
� Hence they don't want to do it,�
� So developers can't provide necessary things for 

people doing UI tests,�
� And they waste their time waiting on blockers.


The only solution is to make the UI tests  a normal 
part of the SCRUM user stories.  UI tests should 
probably be a part of the acceptance criteria for 
each user story.  Only then will UI tests not 
cannibalize developer time, and everyone will 
want to write them – not only devs & testers but  
also business people. 

Everyone will have a stake in creating them. Since UI 
tests will be a part of the user stories and be worked on 
simultaneously with features, they will change with them 
because most of the time, the changes in-app and in 
tests would be symmetric), which will ensure that they 
will not deteriorate.





In the long run, this is the only solution if you have a big, 
multi-team project where different powers pull  
in different directions.





Also, let's not forget that UI tests are still tests –  
and should be treated as such. 





It would be best to run UI tests with your standard 
development workflow. I agree that they might take too 
long to run, and it might not be feasible to run them on 
every build, but at least a minimal viable subset should 
be run that way. And everything else should be run 
periodically (a couple of times a day at least).


FLUTTER AT SCALE



Contracts We all know that somewhere there is  
a regular JSON (or XML)-based API. 
Someone will probably call it a REST API, 
REST-ful, REST-ish, or just "an" API.  
Or GraphQL one. That does not matter.  
No matter what API style you use, it still 
requires a non-negligible amount of work.


First and foremost, you must manually manage it. 
You need to design every endpoint deliberately. 


And this will push you towards manually writing a client 
for this single request, and then another, and then 
another, and you will have a set of manually constructed 
requests that are unmaintainable, probably broken,  
or altogether wrong.





Because of these, contract testing is a must  
– API breakage will be too common to ignore. And finding 
what broke will be very difficult without a robust set of 
tests. Or when the backend allows for some ambiguity.




So, our solution to that is "strongly typed contracts."  
A concept that is now widely used in the banking app 
and at LeanCode.





The idea is simple: since backend devs are the ones  
that serve the requests, and they have the most 
"business" knowledge when it comes to how the things 
should move underneath, let them write everything  
– both the request schema, the request handlers and 
clients for these requests. 





But instead of using OpenAPI to design that, let's use  
a language native to the backend that allows us to 
express everything I was talking about earlier.  
The backend language is probably some general-
purpose one, so parsing it & generating a client that is 
based on it will probably be a not-so-hard task if  
we limit the feature set to only the vital things.


You need to consider every aspect of the API:

will it be a problem to compose a request? Do I 
require some other request to be done before this 
one? Or is a request done after this one? How do we 
ensure that the same data is passed to a couple of 
different requests? Or how can we tell that the data 
format will be the same across a single "area"  
of the API? 

Although it seems simple, it's not that simple;  
it's not easy to express that in a structured way.





Yes, we have OpenAPI that allows us to express that, 
and yes, although manually, we will probably be 
using some tooling to manage everything. But that 
won't be fully automatic. And there will be some 
OpenAPI-code impedance mismatch. 





Especially that you will either have both backend 
and frontend contracts generated out of the 
OpenAPI schema, and both generators will work 
slightly differently.





And this mismatch is not the only thing that will 
cause problems. The clients will work the way  
the tool wants them to, which might not make  
sense to you. 



You will have to tweak them and then maintain them 
manually. And if you use some exotic feature or 
design something slightly different than the tool 
authors assumed, your code will break.  
Sometimes very subtly. 


FLUTTER AT SCALE



What's best is that it's Dart all the way, and every 
mobile developer is/needs to be comfortable with it.  
Of course, it's not a silver bullet.





It does not solve every problem possible and introduces 
several issues on its own. You have a strongly-typed 
client, so if something changes in the types, you need to 
account for that when updating the contracts.  
And it won't matter that it changed far away, in a request 
you don't use.





They don't make the API versioning & supporting easier. 
You still need to do that, although particular versioning 
requests are now slightly easier. You can also enforce 
that the API is backward compatible with proper linting.





And since you operate on high-level types and you 
have a limited number of types there (because, after all, 
it is JSON), you can't express everything.  
And everything is typed, so there is less room for 
ambiguity, and sometimes you need to make things 
awkward.





Although there are problems, some of them minor, some 
of them amplified, all in all, it is a gigantic net plus that 
simplifies the development and understanding of the 
project.


This approach has several benefits:


1 A single source of truth – the backend team 
dictates how everything should look like.  
Of course, they do so after agreeing with the 
mobile team on what it should be. ;)


2 They know the flows and the data they need 
to manage, so they can preserve the 
meaning and communicate that to clients 
using the same language. Plus, a sprinkle of 
in-code documentation.


3 Since they write regular, readily usable code, 
they don't waste time doing documentation 
(that will, in the end, be thrown away because 
the requirements change).


4 Since everything is code and code that is 
generated, there isn't a place for technical 
omissions. Basic types are the same 
everywhere, so if contracts want an `int,` 
you will not be able to put a `String` there.  
If everything compiles (both on the backend 
and client-side), there is a high chance that 
it is correct.


5 Since the client is a regular Dart (/JS) code, its 
discoverability is the same as the rest of the 
project - you open "the API" in VSCode or 
your other favorite editor. You control how  
the client works, so you can make it readable 
without sacrificing functionality.


6 The contracts are also easily versionable 
regarding schema – you use git for that and 
point to a particular commit/tag to use  
a specific version. Do not confuse this with 
API versioning. It would be best if you still  
did that.

FLUTTER AT SCALE



Taming legacy
 When we develop a large-scale 
project, we often make decisions that 
become outdated over time. Also, those 
decisions will have to be made in the 
future, so it’s inevitable. Our code is 
legacy from the moment we wrote it. 

If we wrote it again, there would probably be other 
things that we’d consider. So it’s okay. We have to 
accept it. We can’t remove it, but we can tame it. 
What can we do as developers?


First, we can deprecate things. If some function, 
widget, class, or whole module is being used 
around the code, a new way of doing things must be 
introduced since business assumptions change, 
then deprecate. In Dart (like other languages), there 
is an annotation @deprecated that comes in handy. 
It’s helpful because when 20+ developers are 
working on the project, they must be aware that this 
method or class shouldn’t be used and what is the 
correct way to prevent that.


However, make sure you deprecate. The worst thing 
about deprecation is not obeying it. It introduces 
even more corruption to our code and 
communication since both ways of doing one thing 
are still being used, and new developers don’t know 
what to choose. Also, we have to remember about 
broken windows in our code. 





A broken window in the code means a code smell or 
something that should obviously be done any other 
way, but there probably was no time for that or any 
other unpredictable reason. That code will be 
emerging as more and more corrupted because 
people wouldn’t bother to refactor things. 


To ensure policies in our large organization, we must 
maintain a technical squad because there must still be 
an owner to secure things. The technical squad owns 
everything that’s not related to any business domain  
– CI/CD, tooling, cross-squad big picture things,  
and one of those responsibilities is taming legacy. 





That squad has to organize cycle status events where 
we can monitor the progress of refactoring deprecated 
code. That’s why it’s essential to synchronize across 
squads weekly or so. We don’t want the inertia to grow 
silently as we come to the release. If we control it,  
it’s not so much of inertia.


That’s why we want to be clear about 
deprecation. Because the objective is  
to encourage refactoring, we want to 
minimize concepts that discourage it  
– such as broken windows.


FLUTTER AT SCALE



Design System
 Last but not least, from our 
experience, we should apply similar 
constraints when it comes to design. 
The design of our app means UI from 
the code side, and to make our user 
experience top-notch, we have to be 
consistent. What does it mean?

We merely implement the thoughts and concepts  
of designers that we work with. That’s why we have 
to maintain a design system and do it in tight 
collaboration with designers. Developers should 
always use design system components,  
and one squad should be responsible for the design 
system itself. 





In our organization, the Overall Design Squad  
is a kind of a “master squad” for all designers 
working on the project. It also has developers that, 
while continuously interacting with UX/UI people, 
are developing design system concepts  
in the codebase.

It means that good app design should 
have consistent behaviors, a consistent 
color palette, consistent approaches  
to similar user stories, and so on. 
Moreover, this should not come from  
the code because the UX/UI and design 
don’t come from us – developers. 

FLUTTER AT SCALE



Project Owner’s

perspective on Flutter

I’m a Product Owner at Tribe Seamless in the  
07 Payments squad, responsible for our mobile 
app's payments area. These include various types of 
transfers as well as functionalities relating to the 
BLIK service. As for a banking app, the convenience 
of use and reliability and security of these  
processes are of key importance.

As part of our work on the new mobile app,  
we decided to choose Flutter as the technology  
we would use. This was my first contact with this 
framework, and of course, I initially had some 
concerns knowing that it was “something new.” 
While working with the developers and seeing  
the application running even in its early stages,  
my concerns quickly disappeared. 

By Marcin Olech, Product Owner at Tribe 
Seamless  in the 07 Payments squad  
in the "CA24 Mobile" project.

I already know that the community is also growing faster 
and faster. Flutter supports all our business concepts 
and eliminates the problems related to the native apps  
I wrote about. We tested the app on different systems 
and devices, but it worked identically in most cases. 



This made our work much easier and resulted in building 
the app available quickly from the start of the project.  
In the case of functionalities that may work differently  
on different operating systems, such as PUSHes,  
for example, the developers always pointed this  
out to us to pay special attention to it. 



In conclusion - I consider the choice of Flutter as the 
framework for our application to be a brave but very 
good decision by the bank.


I previously worked on a project for our previous 
mobile app, which was a native app: initially, it was 
available on Android and iOS, and then additionally  
on Huawei. While native apps obviously have their 
advantages, the increased labor intensity related to 
each functionality was the complication. 



Business analysis, testing, and then maintenance  
and development of the app required a tripling of 
efforts each time due to the specifics of each of the 
systems. Moreover, costs were also significantly 
higher for this reason. 



Project Owner’s

perspective on Flutter

In my opinion, it has also been possible due to Flutter, 
which simply makes coding functionalities easier to 
implement. You don't have to create the code for each 
operating system separately. You don't have to test the 
functionalities on each system separately because,  
in most cases, they work the same.

To conclude, I want to say that it is amazing that in one 
year, we have developed and made available to our 
customers a completely new application, rich in many 
functionalities that were missing in our previous app. 
This was also possible because of Flutter technology.


What other benefits can I see from using Flutter  
in our app? �

� It's easier and cheaper to maintain the app. �
� The ability to react quickly to changes in the agile 

way of working is enormous.�
� The possibility to create outstanding animations 

that make our application stand out, including  
our avatar or a river full of benefits, is excellent. 
Although, we faced some of Flutter's limitations 
regarding animations. It turned out that on some of 
the users' older devices, some animations did not 
work to our requirements and had to be modified.�

� Programming in Flutter also made managing  
and delegating tasks between developers easier.  
I didn't have to think about who was doing  
a particular functionality on iOS and who was  
on Android. And each developer could take over  
a colleague's task if necessary.�

� In my opinion, it is also a relatively easy language to 
learn, broadening one's skills. In the project, I met  
at least two developers (including one in my team) 
who started as typically backend developers,  
and in the course of the project, they also learned 
programming in Flutter. 


In the project, I have been acting as a Product 
Owner of one of the squads from the beginning. 
My squad provided a very important part of the 
new application "CA24 Mobile – full of benefits":

We had to (not only me but the whole team) learn to 
work in sprints, where the pace is very fast, and 
these 2-week periods pass in a flash, one after 
another. But it was worth the effort and gave us  
a huge satisfaction when after these two weeks,  
we could present the result of your work and boast 
about it in the Review. 

�� A large part of the dashboard, including its key 
element, the so-called accordion, on which  
we present the products that the customer uses 
most often along with offers in which they may  
be interested, in an innovative way.�

�� Access to the customer's most important daily 
banking products (accounts, foreign currency 
accounts, account cards, credit cards, savings). �

�� Possibility of performing active operations  
on the above-mentioned products (card 
activation, change of card PIN, temporary card 
blocking, opening of a foreign currency account,  
opening of savings products, and many more)
.

The main challenges I faced were 
managing a large backlog and a large 
team, including developers. Moreover,  
I handled these challenges in a working 
methodology previously not practiced  
at the Credit Agricole Bank, i.e., SCRUM. 

By Katarzyna Skiba, Product Owner at 
Tribe Seamless  in the 05 Accounts squad 
in the "CA24 Mobile" project.



Introduction  
to the Design System

The design team – from the Efigence company – 
used Figma for the CA24 Mobile app designs.





Those basics are reused in Figma as well as in 
Flutter widgets. Deciding on how to define those 
styles must be well-thought-out. Well, all those  
30 Flutter developers will use it later, right?


Colors. There are around 40 colors in 
our style guide. All those colors come 
from Figma. They are validated in terms 
of contrast and brand compliance. 


We created two structures that help use our defined 
colors. 
A `CAColor` class, which is a child class of 
Flutter’s `Color` class. The only difference is that  
it has its constructor private so that only the 
`cabp_common_ui` can instantiate new colors.


The second structure is our color palette.  
A `CAColors` class holds all instances of `CAColor` 
and is used by all other widgets or screens. It should 
be an inherited widget, so widgets that use colors 
from the palette get rebuilt when it changes.  
For that, we also have a `lerp` static method, which 
helps when changing themes.




It is very handy in our case. 



The CA24 Mobile application has four themes:  
light & dark theme Cartesian multiplied with  
Detal & SOHO themes (which are fancy names  
for retail and business account themes).


Detal light
 Soho Light

Detal dark Soho dark

The design team should have already prepared 
the foundations of their design system at this 
point.  Most primitive of which is a style guide that 
contains the very-very basic elements such as:�

� fonts used throughout the application, �
� brand colors and styles for specific content, �
� titles, captions or hints,�
� and many other concepts that are defined at the 

very beginning and then reused as a variable – 
rather than hardcoded – in all components.


By Albert Wolszon, A Flutter Developer  
at LeanCode, responsible for the UI 
development of  the "CA24 Mobile" app.

Design System in a large Flutter app



The second most important basic for us was text style. We also used  
a custom class for that purpose, making the constructor private.


What we found is that keeping text style and its color separate makes 
things much, much more manageable. The color usually isn’t strictly 
related to the text style, and it’s more convenient to have `style` and 
`color` parameters in `CAText` instead of using `copyWith` on style  
or other wild constructs. It has also enabled us only to accept our 
constrained types for text and other widgets:


Box shadows (which we call elevations), curves, durations, and map 
styles are solved similarly.


Design System in a large Flutter app



Those widgets are put into another. Small parts are 
reused in more extensive pieces of UI. Brad Frost 
formalized the process of placing UI pieces together 
in a methodology better known as Atomic Design.


From the most trivial ones like `SizedBox,` 
`Container` or `Text` to Material’s 
`ContainedButton,` `AlertDialog` or `Scaffold.`


Atomic Design
 Once we have the basics set up, 
it’s time to create our first widget! 
Flutter already gives us a collection  
of many customizable widgets.


It’s a methodology of designing oriented 
around components, not whole screens.  
It defines how the minor independent parts 
– atoms – are built and reused in other 
places, such as molecules. It can be a 
simple thing like an icon that we always  
put on a small circular background.


A molecule is a group of UI elements that together 
can deliver some data to the user and simply add 
the purpose to a screen fragment. We have a card 
where we put a title next to that icon and add some 
border and box-shadow around it.


Organisms group molecules together, creating  
fully-meaningful parts of the user interface. If you 
see an organism somewhere, it will be entirely 
understandable and function as a container with 
some context that you can safely put next to other 
“contexts,” like a carousel of mentioned cards with  
a heading and a close icon on a bottom sheet. 

If we put it on top of anything, it will still be visually 
understandable to the user.


Templates help glue everything together. Pages are 
simply… screens.




I highly recommend reading more about the 
methodology in “Atomic Design” by Brad Frost,  
a free online ebook.




The Overall Design squad was developing mainly  
atoms and molecules, but there were also some 
complex organisms and templates.


ATOMS MOLECULES ORGANISMS TEMPLATES PAGES

Design system in  a large Flutter app



Ambiguity
 One of the biggest pain points was  
the frustration when different people 
had different ideas on how something 
should work. Naturally, developers 
came to designers with questions 
regarding components they develop. 


We usually called each other for ad-hoc calls and 
discussed that. The problems arose when some 
time had passed, and others started asking 
questions about why something works that way and 
not the other. 





Those small decisions led to scratching our heads, 
searching through conversations with designers on 
Teams, or revisiting Git history for that component to 
remind ourselves why we introduced such change 
in the first place.





At some point, it became a frustration that needed to 
be addressed ASAP. From then on, we always 
update the specifications on Figma or 
documentation in code straight away so that all 
knowledge and changes with their motives persist.





On a higher level, this is known as Architecture 
Decision Log.


Be it how something should behave in certain 
conditions, what should be clickable in this and that 
edge case, and how those parts should animate on 
the screen. 


Design system in  a large Flutter app



Future-proofing
 During the development of this common 
UI library, there were a few situations 
where we were worried that we would 
need to rewrite many components 
because of some changes. 


That was the case when we were introducing 
drastic changes to how the increased text scale 
accessibility feature was influencing our 
components or when there were other changes  
to how everything should animate with the finger 
gestures on our custom scaffolds.




You can't see some of those changes, but 
preparing for some of them is possible.




When we were first developing more complex 
organisms, there was no motion design prepared  
at that point, unfortunately. If we completely ignored 
the transitions when changing the currently 
selected tab in the tab bar or carousel physics, 
adding them later would be a refactor. 



It would cost us not only the time needed for 
introducing changes in the widget but also the time 
wasted in migrating all of the code that already  
used it.




The same principle applies when introducing new 
variants to components. Let's say you have a card 
that, until now, had only one style. The designer 
prepared another state for this card. 



Let's say that's a card that describes a debit bank 
card. The new state is for a case when a bank blocks 
the card. You can add a boolean `blocked` 
parameter to that card or introduce an enum that 
describes its states, like `normal,` `blocked,`  
and probably some other like `shipped`  
or `expired` in the future.


The most recent challenge we encountered was 
fixing the application's appearance with  
an increased text scale. You'd be surprised how 
many people reported issues related to that. 



Thankfully, all text content, labels, and paragraphs  
in the app used our custom `CAText` widget. So we 
could address the vast majority of those issues by 
remapping how the Flutter's text scale factor 
influenced font size and its line-height, as we  
agreed with the design team.


The dark mode was one of the things we knew 
we'd be implementing at some point in the future, 
but we didn't have anything close to its 
specification. If we did not create this construct of 
color palettes mentioned at the beginning of the 
article, we would spend a horrendous amount of 
time replacing all colors with their dark mode 
counterparts. It paid itself back doubly when we 
had to introduce another dimension of color 
themes (retail/business account).


Think ahead. It saves time and helps

you stay sane.


Design system in  a large Flutter app



 Navigation
 Other developers develop screens 
using our UI components, based on 
Figma designs. 

Figma allows navigating to component definitions 
from their instances conveniently. There, developers 
are welcomed with all available variants for  
a component, its specifications, and its Flutter 
widget name, which they can use straight away  
in their Dart code.



Or, in other cases – an enum value, a named 
constructor, a few class names, or a widget’s name 
with some parameter value. Whatever a developer 
needs to use the component.


Developers from the Overall Design squad sometimes 
need to investigate how and why a component is used  
in a certain way. It generally comes down to finding  
the screen's source code, using Flutter Inspector,  
or searching for localized strings on a screen.  


Ideally, all screens have a one-line comment on top of 
their class that describes where this screen could be 
found in Figma. 


We have so many screens and designs that 
we have over a dozen Figma files for different 
squads with all screens numbered, so it's easy 
to give a file's name and the screen number to 
find it. It saves you the hassle of asking the 
developer or designer for directions when you 
can't find the design yourself.


Design system in  a large Flutter app



It serves:�

� The Overall Design squad of developers as  
our magic workplace. We develop widgets  
in isolation and check all edge cases, strings of 
different lengths, states, and parameter toggle 
straight away without needing to sign in to the 
application. We don't have to wait for  
the emulator/simulator to boot or click through 
complex processes to reach this specific widget 
in a chosen state. It's also much quicker to 
compile and launch the desktop storybook 
application than wait for the mobile one.  
It's just faster.



�
� Other developers as a place to explore widgets 

before putting them inside a screen, checking  
if it suffices their needs even without writing  
code and hot reloading the app.



�
� Hosted on the Web as a place to display 

increments on Sprint Reviews, where we can 
open each new or modified component in  
a new tab and simply go through all of them 
prepared.



�
� As an environment to validate the components 

by the designers if everything looks and works 
correctly, as they wanted.



Storybook
 If we were to name one thing that 
improved our productivity in the 
project the most, we would scream 
storybook without a second of 
thought.


All those buttons are easily accessible 
through the storybook via its knobs. Do you 
want to see how a button looks in different 
sizes? Different type? With a leading icon? 
With a trailing one? On dark background? 
Sure thing! Adjust the knobs in the sidebar, 
and you’re good to go!


� Everyone else. Product Owners – they need to know 
whether a component is already developed or not to 
plan their squad's sprint more effectively. Social 
media people – they can set up and screenshot  
a card component with the travel credit information 
for their vacation marketing campaign.


Design system in  a large Flutter app



Communication
 Being the code owner of a package 
used by everyone else makes you hold 
and create knowledge that needs to 
be shared with other developers.


When it is information that is crucial at the moment – 
an announcement of a new component that some 
squads were awaiting or a deprecation notice with 
some hints on what to replace the component with – 
we were using a simple means of a message on our 
dedicated Teams channel for Common UI 
announcements. It was marked as important, so 
everyone got this annoying push notification and 
wouldn’t miss the news.


Apart from the developer-developer 
communication, as the Overall Design’s 
developers, we also had the developer-designer 
one. There were three significant learnings for us�

� Formalizing each decision, as mentioned in 
Ambiguity.


It is a place with help not specifically on how 
something works but what component or solution to 
choose and why when designing screens and 
business logic.


We used Markdown documents in the 
repository for higher-level 
documentation and other 
communications that should stay in 
some place and be accessed when 
necessary. It is where we store steps 
necessary for newly onboarded 
developers or people who need to use 
some part of the framework or some 
shared functionality for the first time.


� Process of receiving updates from designers.





A vast part of our daily work was developing 
components our designers have designed. Or we were 
updating the already created ones. But we need to be 
notified of those components that have changed. It is 
something that would usually be resolved simply by 
using the JIRA board, where designers drop a tile 
concerning their component onto the next column on  
a board where we notice it and begin to work on it. For 
security reasons, designers could not access the JIRA 
back then, so we made our kanban board in Figma.


�

� Components’ changelog would be very handy. 





Sadly Figma doesn’t support something like that, and  
we didn’t maintain such changelogs by hand. Figma 
does indeed have file revisions history, but it’s the 
specific component’s changes that we usually wanted to 
check, not the whole file.



Design system in  a large Flutter app



Responsibility
 What is the responsibility of the Overall 
Design squad? It needs to be decided. 
Clear code ownership is crucial for 
maintaining such a big codebase. 
Otherwise, the code without clear 
ownership will be lost.


You need to decide where you’re 
going to draw a line.

Here are some of the things you 
may wish to be responsible for as 
a squad or not:


Design primitives


Common UI components


Common animations


Localization


Validation

Repeated business logic


Design system in  a large Flutter app



Technical

challenges

During the development, we stumbled 
upon many challenges, both small and 
big. The first significant decision 
involved choosing the correct tool for  
a storybook. As you already know,  
the outcome was relatively successful. 


At the moment of writing, two more solutions are 
available: `widgetbook` and `flutterbook`, both of 
which seem promising.





The application's biggest and most complex 
component is the root bottom drawer located on the 
start page, below the accordion and benefits river, 
connected to the screen it shows when expanding. 
When you play with the application, you can see 
how the drag gesture slowly reveals the second 
screen, which is a separate route.  





Apart from that, on this second screen, you can 
scroll the page, typical behavior, with the header 
elements folding themselves with the paging zip on 
the side. When you focus on the search bar, it also 
animates itself to the app bar. And if you happen to 
be on top of the page, you may drag the body down 
to collapse the drawer from the start page.





Trivial stuff, eh? No. The first iteration of this artifact 
took 2 weeks, heavy research, and deep-diving into 
the internals of scrolling, gestures, and routes.


The code behind it was so clean it shined.




On the contrary, we also had some minor technical 
problems. One of them was the `VisualDensity` in a few 
of the Material components we used, like `TextField` 
and `TextButton.` At first, we didn’t notice it. Still, the 
buttons on the mobile were bigger than on the desktop – 
in the storybook. Once we found the problem, it was a 
quick override in those widgets, and voila!





This project was a huge opportunity to dive into some 
Flutter internals.





Some of the other things we dove into were inputs, input 
decorators, and the backend connecting Flutter with 
native input logic. Dropdowns, how they work, and how 
they use `CompositedTransformFollower`s and 
`Target`s. Scaffolds with all their insets. Routes, how 
they animate and handle popping, `Overlay.`


Looking inside `DraggableScrollableSheet` was very 
helpful, as it did more or less the same things, just a 
magnitude of complexity lesser. But after the design 
team reiterated and reiterated more on how this 
screen should behave, the following updates were 
harder and harder to introduce until, at some point. 

We finally couldn’t introduce the change as the code 
was such an incomprehensible mess.



It was a time for a clean and thought-out refactor. 

We started by drawing all available states on paper and 
laying them out on the floor to find how each state relates 
to the others. Then we knew what we were dealing with. 
We could start with looking for the correct math for 
concrete translations and applying them.


When we had this dilemma, there were only two 
open-source players on pub available – 
`storybook_flutter` and `dashbook.` After doing 
some research and creating an MVP, we decided to 
go with `storybook_flutter.` Later, we refactored it 
to accommodate our requirements, such as tree 
structure for the components, two theme 
dimensions, and Credit Agricole branding.


Design system in  a large Flutter app



UX perspective 
on Flutter

As soon as our project leaders accepted the concept,  
we started the design and delivery phase. We could 
expand our team and enable designers to work within 
squads. But at the same time, we began creating  
the first UI frames ready for development. 





And that's why we also had to begin working on our 
Design System, which was coordinated by Squad 01: 
Overall Design. Initially, this task was hardly trivial 
because even with the Atomic Design approach, at this 
stage, we had to decide the final shape of the main 
Molecules quickly and the Organisms our app was built. 




With every sprint, we kept growing our library of fully 
developed components. That was also one of the most 
significant benefits or Flutter working across platforms: 
we were able to have just one instance of each 
component in our Design System.


Our job was to create a UX strategy based on our 
goals and aspirations for the future. It meant that we 
had to analyze the main ways our product would be 
used. 




Starting with the discovery phase, we have 
examined all the materials and prerequisites 
including User Journeys gathered and created by 
the CX Team. Then we started conducting IDIs (In-
depth interviews) with potential customers. 




Equipped with this knowledge, we organized UX 
workshops to extract the main needs and issues our 
users might have. Such analysis has paved the way 
to such featues as the "River of benefits" where 
users get big discounts when doing shopping at 
well-known stores. A combination of CA partners' 
discount offers paired with smooth animation of 
bubbles with icons and logos floating on the 
dashboard. 



During the Envision Phase, we have 
iterated plenty of ideas. Before the first 
sketch was drawn, we had to check the 
constrains of chosen development 
technology. Fortunately for us, Flutter is 
a very “design-friendly” framework. 



UI-wise, we were able to discover 
Flutter's potential by closely examining 
the proof of concept. This has led us to 
believe the constraints we had to 
consider wouldn't compromise the 
app's UX and UI of the new CA24 Mobile.


By Marcin Kinderman, User Experience & 
Service Design Director at Credit Agricole's 
Online and Mobile Banking department. 




In the end, User Experience should be "technology-
agnostic," as users should not be able to spot the 
difference in how something is implemented, no matter 
which platform they use. In this aspect, Flutter saved  
us a lot of time. 




Apart from minor hardware incompatibilities, a spectrum 
of screens and viewport sizes, we didn't have to work on 
separate solutions for Android, iOS, or Huawei platforms. 
That also gave us an edge in delivering new features, 
placing us ahead of the rest in the banking market. 


Key takeaways:�

� Flutter did not limit us in any significant way in 
terms of design.�

� Using a Design System was crucial for consistency 
and significantly reduced the time needed to work 
on new functionalities. �

� With a project comprising more than 2k frames,  
we could easily manage a broader scope than  
our previous mobile app was offering�

� Both designers and developers must have time to 
support each other during components 
development and creation�

� Flutter-based Design System allowed us to easily 
update components on the go after we have 
discovered different bugs or, at times, lack of 
consistency in designs�

� Flutter enabled the full potential of animations, 
including the implementation of “Dito” our app's 
animated mascot�

� Major UI animations are usually better when  
a professional animator first creates an example  
of precise motion and transitions of components�

� Until now, we have conducted nine UX user tests 
with 90 participants. Each test provides valuable 
information about user flows and how users 
interact with individual Design System 
components.



Credit Agricole Bank Polska faced a decision of 
whether to update its current application or build  
a completely new one to meet customer 
expectations and become one of the leaders  
in mobile banking.





They needed a solution that would allow them to 
create a coherent application for both platforms.  
But at the same time, meeting its  requirements  
not only during the hottest phase of project 
development but also in the longer term. 



Another crucial area of developing this banking 
application was meeting the challenging UX 
requirements. Flutter technology is known for its 
seamless UI/UX features and robust design 
elements. So, in this case, it allowed delivering  
a unique customer experience. 


The team of 200+ members from different 
companies, including 20+ Flutter Developers, 
worked together for a year on this mobile banking 
project to deliver probably one of the biggest Flutter 
applications in the world.

Wrap up
 We’re confident that the knowledge  
we share in this ebook will help you draw 
your conclusions on using Flutter and 
give you insights on organizing work  
in large Flutter teams. 

They were aware that the chosen 
technology had to ensure the quick 
addition of new functions in the future 
and ease of maintaining the application. 
Flutter technology meets all these 
needs, making it a perfect fit for building 
the mobile banking application.

In our opinion, this project proves that Flutter 
technology is ready for large-scale enterprise 
projects. “CA24 Mobile” app will enable Credit 
Agricole Bank Polska to advance in Poland’s  
highly competitive banking market thanks  
to this technology. 




A final word of thanks to all the developers and 
business partners who contributed to this ebook: 
without your effort, time, and support, it would  
not have been possible.




About LeanCode

LeanCode is a Software House from Warsaw, Poland, and a leading provider of 
the native mobile applications built with the Flutter Framework.


Our services  include: 

Mobile Apps

Audit

Web

development

DevOps

Service

Product

Design

IT ConsultingMobile App 
Development

You can find out more about our core 
technologies, services, and delivered 
applications 
 on our website: 



leancode.co



If you have any project in mind, we are 
always open to discuss your needs and 
possibilities. 
The best is to reach us via
:

We have a team of 60+ developers, 
designers, product owners, scrum 
masters, and QA engineers who 
support the development of mobile and 
web applications using Flutter, .NET, 
React, and other technologies.


The majority of our clients represent 
the Banking and Fintech industry, but 
we also develop products for 
Marketplaces, Logistics companies, 
SportTech, MedTech startups, and 
others. 



We work with clients from all over the 
world, including the USA, UK, Germany, 
and Australia.


Get an estimate form



See what’s new at LeanCode on: 

https://leancode.co/
https://leancode.co/get-estimate
https://www.linkedin.com/company/leancode/
https://www.facebook.com/LeanCodePL
https://twitter.com/leancodepl?lang=en
https://www.instagram.com/leancode_pl/?hl=en

